On the divergence of polynomial interpolation
نویسندگان
چکیده
منابع مشابه
On the Divergence of Polynomial Interpolation in the Complex Plane
We extend the results in [1] and [2] from the divergence of Hermite–Fejér interpolation in the complex plane to the divergence of arbitrary polynomial interpolation in the complex plane. In particular, we prove the following theorem: Let 1n = −1 ≤ t (n) 1 < · · · < t (n) n < 1. Let φ k be polynomials of arbitrary degree such that φ k (t (n) j ) = δk j . Then the Lebesgue function3n(x) = ∑n j=1 ...
متن کاملOn partial polynomial interpolation
The Alexander-Hirschowitz theorem says that a general collection of k double points in P imposes independent conditions on homogeneous polynomials of degree d with a well known list of exceptions. We generalize this theorem to arbitrary zero-dimensional schemes contained in a general union of double points. We work in the polynomial interpolation setting. In this framework our main result says ...
متن کاملOn multivariate polynomial interpolation
We provide a map Θ 7→ ΠΘ which associates each finite set Θ of points in C with a polynomial space ΠΘ from which interpolation to arbitrary data given at the points in Θ is possible and uniquely so. Among all polynomial spaces Q from which interpolation at Θ is uniquely possible, our ΠΘ is of smallest degree. It is also Dand scale-invariant. Our map is monotone, thus providing a Newton form for...
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2003
ISSN: 0021-9045
DOI: 10.1016/s0021-9045(02)00013-8